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Chapter 1 

Introduction 

The study of information process ing in the brain is one of the most active and progressing 
fields of modern science. Many disciplines of science are being app lied to explore the 
principles of information processing in the brain. For example, neurophysiologists are 
analyzing the microstructures of nervous systems and explaining their funct ion at the 
cellular and molecular levels. Cognitive scientists are investigating various aspects of 
huma n information process ing and describing them by macroscpic models. In order to 
get a complete understanding of t he functions of neural systems ther~ must be a theory 
that links together our knowledge of the molecular processes in a neuron, the function 
of neural networks in a region of the cortex, and the total behaviors of animals and 
humans. This is a major goal of computational neuroscience. In recent years more and 
more researchers have become aware of the necessity of computational or mathematical 
approaches to the study of neural information processing. 

The objective of this thesis is to develop a general scheme for constructing compu­
tational models _of dynamical information process ing in the brai n. Supervised learning 
in multi-layered networks has been one of the most successful strategies for construct ing 
computational models for given informat ion processing tasks. However, the convent ional 
supervised learning algorithms-perceptron learn ing [34] and back-propagation learning 
[35]-can be applied only for feed-forward disctete-time networks. 

Feed-forward networks can represent arbitrary mappings between vectors, however, 
the role of neural systems is not limi ted to learning static input-output relationships. 
Even in the simplest animals neural outputs are not only a function of the present external 
inputs but are also dependent on its in ternal state and autonomous dynamics. For 
example, the rhythmic patterns of locomotion of insects, fish, and mammals are generated 
by autonomous oscillations in their central nervous systems . In higher animals, especially 
in huma ns, not only the motor system but also the sensory information processing is 
dependent on the internal state. In order to model such autonomous functions of neural 
systems a network must have both internal states and recurrent connections. 

Discrete- time operation has been assumed in most of the computational models of 
neural systems. Temporal behaviors of such models are very much determined by the fact 
that they operate in discrete-time. In biological neural systems, however, each neuron 
operates continuously and asynchronously in time. This difference is not so important 
in modeling the static aspects of neural information processing, because the significance 

4 
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of those models lies only in the stationary states of the networks. On the other hand , in 
modeling of dynamical behaviors of neural systems the temporal evolution of the system 
is essential. 

It has been shown by physiological experiments that the mechanisms of both motor 
control (18] and perception (17] are based on the synchronization or entrainment of os­
cillatory modules of neurons. In view of this property we note that the behavior of a 
continuous-time neural network model is robust to perturbations of the incoming signals, 
since each unit has the characteristics of integration and decay over time. On the other 
hand, it is rather difficult for a discrete-time model, whose state can change by large 
amounts at every time step, to adapt its dynamics to the temporal fluctuations of incom­
ing signals. Thus, in order to model the flexible temporal behaviors of neural systems it 
is inevitable that we will need to employ continuous-time models. 

In the following chapters we formulate general supervised learning algorithms for 
continuous-time neural networks with recurrent connections. The basic strategy is to 
consider the network dynamics as a mapping between functions in time, of such things 
as network variables, parameters and output errors, and to derive a gradient descent 
algorithm using the derivatives of this mapping. Conventional learning algorithms are 
derived £rom the differential relationships between connection weights and static input 
and output vectors, but by employing the derivat ives of mappings between functions of 
time then gradient descent learning algorithms can be generalized to continuous-time 
networks. This approach also provides a unified formulation of learning algorithms for 
recurrent networks. 

In Chapter 2 a simple network model which can learn oscillatory patterns is described 
and a learning algorithm is derived. In Chapter 3 the learning algorithm is generalized to 
a larger class of network models, which include both discrete-time and continuous-time 
operations and arbitrary network configurations. In Chapter 4 mechanisms for memoriz­
ing and regenerating multiple temporal patterns are discussed and several examples are 
demonstrated by simulations. Chapter 5 describes two models of motor learning from 
the viewpoint of coordination of neural and physical dynamical systems. The current 
and future applications of these learning schemes in both neuroscience and engineering 
are discussed in the concluding chapter. 



Chapter 2 

Continuous-Time Back-Propagation 
Learning Algorithm for Adaptive 
Neural Oscillator Networks 

In this chapter we construct a simple network model of rhythmical temporal pattern 
memory, which is called an Adaptive Neural Oscillator (ANO) [8]. As a learning algo­
rithm for an ANO network we extend the back-propagation learning algorithm [35] to 
continuous-time network models. 

2.1 M emory of motor patterns 

When we learn a new motor skill-such as, using a typewriter, playing a guitar or playing 
tennis-we have to be conscious of the movement of our fingers, arms, legs or other parts 
of our bodies. However, after repetitions of these new movements, we can execute the 
tasks without being conscious of the detailed movements of our bodies. This suggests 
that there exist some neural networks which undertake the regeneration of the motor 
patterns which were repeatedly given by the higher centers. This idea is illustrated in 
Figure 2.1. With the help of these motor pattern memory networks, the higher functions 
of the brain are exempted from lower level control tasks and can concentrate on higher 
level tasks, such as selection and coordination of simple motor patterns. But how are the 
various patterns of motion stored in our brains? 

Physiological studies in animals such as leech [26], lobster [38], lamprey [18] and cat 
[39], have revealed that the rhythmical patterns of locomotion are generated by neural 
oscillator circuits in their spinal cords or ganglia, which are called central pattern gen­
erators (CPG) (19]. The structures of CPGs in these animals are determined genetically 
and therefore the oscillation patterns are hereditary and fixed. On the other hand higher 
animals can learn new patterns of motion which are not inherited from their parents. 
How are the acquired motor patterns of the higher animals stored and regenerated in 
their nervous systems? Physiological experiments with monkeys suggest that the pre­
motor area and supplementary motor area of the cerebral cortex are responsible for the 
control of sequential motions (41]. However, the neural mechanisms in those areas are 

6 
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Higher Center 

I I 

:----------Trigger/Selection------------- : 

------- ----Temporal patterns of motion·--------· 

Learning Regeneration 

Conscious Motion Unconscious Motion 

Figure 2.1: The function of motor pattern memory networks . 

not yet elucidated. 
Motor patterns of industrial robots are usually stored in arrays of the joint angles at 

each time-step and are replayed by scanning them. Since such time tables have never 
been found in animal motor nervous systems it would be reasonable to assume that the 
acqu ired motor patterns are stored in the connection patterns of some neural networks 
and regenerated as the waveforms of their network dynamics . In this case, the brain 
must solve the inverse problem of determining the synaptic weights by which the network 
generates the desired temporal patterns. 

In the following sect ions we will give one solution to the inverse problem of find­
ing a connection pattern which makes the network oscillate autonomously with a given 
waveform. 
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input unit 

external input 
__ d(t) 

feedback 

Yn+l(t) 

hidden units output unit 

Figure 2.2: The st ru ct ure of an adaptive neural osci ll ator network. 

8 

2 .2 The · dynamics of an adaptive neural oscillator 
network 

In this section we construct a simple neural network model of learning of rhythmical 
temporal patterns, which we call adaptive neural oscillator (ANO). We use a continuous­
time neuron model because its temporal behavior is more similar to a biological neuron 
than a discrete-time neuron model. It is well known that a recurrent neural network with 
asymmetric connection weights can be an autonomous oscillator [2]. The purpose of an 
ANO network is to memorize a given waveform as the output waveform of its autonomous 
oscillation. 

The structure of an ANO network is shown in Figure 2.2. The network has n + 1 
continuous-time neuron models, each of which is a cascade of a weighted summation, a 
linear filter of first order time lag, and a sigmoid output function. One of them, indexed 
by n + 1, is the output unit for which a desired output waveform is given . The other n 
units, indexed by 1 through n, are hidden units whose output is not explicitly specified . 

The output unit sums the output waveforms of the hidden units so that its output 
waveform becomes close to that of the desired output . It is clear that the output unit 
cannot produce any rhythmic output if all of the hidden units are quiescent. It is desirable 
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that the hidden units are oscillating with the same period as the desired signal but with 
different waveforms and phases. The easiest way to realize this condition is to give a 
forcing input to the hidden units using the desired signal. In this case, if the learning 
is completed and the output of the network is the same as the the desired waveform, 
the forcing input can be replaced with the actual output of the network and hence 
autonomous oscillation with the desired waveform is achieved. 

Thus we suppose that the network has two operating modes, the memorizing mode 
and the regenerating mode. In the memorizing mode each hidden unit is forced to oscillate 
by the desired signal and learning is executed so as to make the waveform of the output 
as close as possible to that of the desired signal. In the regenerating mode the output 
signal is fed back into the input and an oscillation with a waveform similar to the desired 
signal should arise if the learning has been sufficiently accomplished. 

W ith an add itional input unit, which is index by zero and serves only as an input 
acceptor (see Figure 2.2), we define the dynamics of the network as follows, 

Yo(t) 

d 
r·-x·(t) ' dt • 

yi(t) 

{ 
d(t) 
Yn+I(i) 

n 

(memorizing mode), 
(regenerating mode), 

-x;(t) +I: w;JYi(i) + b; (i=1, ... ,n+1), 
j=O 

g(x;(t))(i = 1, .. . , n + 1) . (2.1) 

The variables x;(t) and y;(t) represent the internal state and the output level of the i-th 
unit respectively, and d(t) is the desired output. The connection weight from the j-th 
unit to the i-th unit is denoted by W;j and the input bias of the i-th unit is denoted by 
by b; . We suppose there are no direct connection from the input unit to the output unit 
and no self-connections, that is, Wn+I,O = 0 and w;; = 0 for i = 1, ... , n + 1. Note that 
each unit has a first order delay, or leaky integrating, characteristics with a decay time 
constant r;. We usually use a symmetric sigmoid output function 

1- e-x 2 
g(x) = 1 +e-X = 1 +e-X - 1, (2 .2) 

that has g(O) = 0 and g(±oo) = ±1. 
If we assume that learning has completed ideally in the memorizing mode, that is, 

the waveform of the output unit Yn+ 1(t) has become exactly equal to that of the external 
input d(t), then switching of the input from d(t) to Yn+ 1(t) makes no difference in the 
waveforms of the hidden units and consequently to that of the output unit. This means 
that the waveform of the external signal d(t) has become a periodic solution of the closed 
loop dynamics in the regenerating mode. 

In general, however, when the learning has converged, the output Yn+I(t) may not be 
exactly equal to the input d(t). In this case, d(t) is not the periodic solution of the closed 
loop network. Moreover, even if the learning is complete and there exists a periodic 
solution, it may not be stable as a solution of the autonomous system and the oscillation 
with the desired waveform may not be sustained. 

To examine the existence and stability of the periodic oscillation in this network we 
should investigate the functional mapping F from y0 (t) to Yn+I (t). The fixed points of the 
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mapping F correspond to the periodic solutions of the closed loop network. However, 
since the mapping F is very complicated, it seems to be almost impossible to fully 
elucidate its properties analytically. 

However, if Yn+ 1 (t) is sufficiently close to d(t) in the memorizing mode and F is 
locally a contraction mapping, there is a stable fixed point ofF near d(t). Since each 
unit has a saturating and smoothing output property, it is plausible that F can be 
locally a contraction mapping, although this will dependent on the waveform d( t) and 
the connection weights. Thus, at least under some favorite conditions, the network may 
have a stable periodic solution that is not far from the desired signal d(t). In the later 
sections in this chapter the existence and stability of the autonomous oscillation will be 
assured by computer simulations. 
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2.3 A continuous-time back-propagation learning 
algorithm 

In a primitive model of an adaptive neural oscillator [6], the weights of the hidden units 
were fixed at random values and the adaptive filter learning algorithm [44] was applied 
only at the output unit. These networks could memorize and regenerate various wave­
forms, but their abilities were greatly limited by the fixed random connection weights . 

To make the connections of the hidden units also adaptive we modified the back­
propagation learning algorithm [35] and applied it to continuous-time network models. 

In a continuous-time neural network the present output of a unit is affected not only 
by the present values of the inputs but also by the preceding input waveforms. Therefore, 
we must deal with the relationship between the state histories of units rather than just the 
relationship between the states of the units at each time step . That is , we must consider 
the state as a function of time rather than the state at a given time. In particular, where 
in the conventional back-propagation algorithm we worked with derivatives, we must now 
take function of Frechet derivatives . 

In general, when a mapping F : x(t) t-t y(t) is given, the Frechet derivative ofF at 
x(t) is defined as a linear operator DF(x(t)) such that, for any small function E(t), 

F(x(t) + E(t)) = F(x(t)) + DF(x(t))E(t) + o(E(t)), (2.3) 

where o(E) is a smooth function satisfying 

(2.4) 

For the composition Go F of 

y(t) = F(x(t)) and z(t) = G(y(t)), (2.5) 

we have the chain rule 

D(G o F)(x(t)) = DG(y(t))DF(x(t)) . (2.6) 

In analogy to the formulation and notation of the conventional back-propagation algo­
rithm we will denote this chain rule by 

az az ay 
ax= ay ax. (2.7) 

We now rewrite the dynamical equations (2.1) by regarding them as a serial compo­
sition of mappings between functions of time. 

n 

u;(t) l:w;1yj(t) + b;, 

x;(t) 

y;(t) 

j=O 

(1 + T;~ t 1u;(t), 

g(x;(t)), 

(i=1, ... ,n+ 1) , (2.8) 
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where u;(t) is the total input to the i-th unit and (1 + r~ t 1 is an operator of first 
dt 

order time lag, that is , a function x(t) = (1 + r~ t 1u(t) is given by the solution of the 
dt 

equation 
d 

rdtx(t) = -x(t) + u(t). (2.9) 

d d 
The Frchet derivative of this operator is D(1 + rdtt1 = (1 + rdt)- 1

, since it is a linear 

operator. 
The goal of learning is to make the output Yn+l (t) as close as possible to the external 

input d(t). For this purpose we introduce the error function 

(2.10) 

The partial Frechet derivatives of e(t) with respect to the weights of the output unit 
Wn+J,i (i = 1, ... , n) are calculated as follows, 

Yn+l(t)- d(t), 

Oe OYn+l OXn+l OUn+l ---------

(2.11) 

In order to calculate the partial derivatives of e(t) with respect to the weights of the 
hidden units, we assume that the contribution of y;(t) to e(t) is made mainly through 
the direct connection Wn+J,i· Thus, considering only the direct error propagation from 
the output unit to the hidden units, we have the following partial derivatives, 

oe 8e OYn+ I OXn+J OUn+J 
oy; OYn+l OXn+l OUn+l ~ 

1- Yn+l(t) 2 d 1 
(Yn+l(t)- d(t)) 

2 
(1 + Tn+Jdtt Wn+J,i, 

8e 8e oy; OX; OU; -----
oy; OX; au; OWij 

(Yn+J(t)- d(t)) 1- Y;+l(t)2 

d -1 1-y;(t)
2

( d)-1 () 
·( 1 + Tn+l dt) Wn+l,i 

2 
1 + r;dt Yi t · (2.12) 

Using the equations (2.11) and (2.12) we can derive learning equations as follows. 
First we define the average error 

1 loT E =- e(t)dt. 
T o 

(2 .13) 
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The change of the average error C:,.£ caused by a small change C:,w;; in the weight w;; is 
estimated by 

1 !aT Oe C:,E = - --C:,w;;dt. 
T o ow;; 

(2.14) 

If we fix the desired output d( t) and the initial state x;(O), E can be regarded a scalar 
function of the connection weights { w;;}, which are fixed during 0 ~ t ~ T. Then the 
partial derivative of E with respect to a weight w;; is 

!.!!}__ - !_ {T ~1 dt (2.15) 
ow;; - T lo OW;; ' 

which is the average of a function made by applying the linear operator O~j to a unity 

function . Thus we can use an "epochwise" gradient descent algorithm 

1 ikT Oe 
C:,w;;(kT) = -f-T ,--1 dt, 

(k-l)T UWij 
(2.16) 

with a positive constant f. 

Instead of averaging a:. _1 and updating w;; at the end of each epoch ( k - 1 )T ~ ,, 
t ~ kT., we can change w;; by the current value of a:,i 1 if the change of the weights 

are sufficiently slow. In this case the learning equation for the weights of the output unit 
Wn+l,i (i = l, ... ,n) is 

8e 
-f~---1 

awn+l,i 

1- Yn+I(t)2 d - I 
-ft(Yn+t(t)- d(t)) 

2 
(1 + Tn+Idt) y;(t), 

and for the weights of the hidden units w;; (i = 1, ... , n; j = 0, 1, ... , n) is 

d 8e 
-w;;(t) -f2--1 
dt ow;; 

1 - Yn-+I(t)2 
-f2(Yn+t(l)- d(t)) 

2 

d ) 1 ( ) 1 - y;( t)
2 

( d) 1 ( ) ·(1 + Tn+I dt - Wn+t,i t 
2 

1 + T;dt - Yi t , 

(2.17) 

(2.18) 

where ft and f2 are the positive constants which determine the speed of learning. We 
use these "realtime" learning equations in the following simulations. 

The learning equations for the input biases b; ( i = 0, ... , n + 1) are derived by 
regarding them as connection weights from a unit whose output is always one. That is, 

d 1- Yn+t(t)2 
dtbn+I(t) -ft(Yn+t(t)- d(t)) 

2 
, (2.19) 

d 1- Yn+t(l)2 
dtb;(t) -f2(Yn+I(t)- d(t)) 

2 
d -I 1 - y;(t) 2 

( ) 
·(1 + Tn+I dt) Wn+l,i 

2 
, (i E H). 2.20 
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2.4 Simulations 

The abilities of the network were examined by computer simulations. In the following 
simulations n is the number of the hidden units, T is the period of desired signal d(t), 
and tm is the duration of the memorizing mode, or simply the memorizing time. The 
initial connection weights were chosen randomly with a uniform distribution between -8 
and +8, and the decay time Ti = 1.0 for all units. 

Since the waveforms that this network can generate are smooth and bounded between 
-1 and +1, we used the desired output of the form 

. 27rkt 21rkt 
d(t) =g(L)aksm-T +bkcos-)) . 

k T 
(2.21) 

2.4.1 Responses of the units in the memorizing mode 

In the memorizing mode the response of the output unit to the input signal d(t) changes 
with the change of the hidden-to-output connection weights. The response of the hidden 
units also changes gradually with the change of the input-to-hidden and the hidden-to­
hidden connection weights by the back-propagation learning. 
·- One example of the changing responses of the hidden and the output units are shown 
in Figure 2.3. The network has four hidden units and one output unit. We will denote 
by y1 , . .. , y4 the responses of the hidden units and as y5 the response of the output unit. 
The input signal d(t), which is also the desired output, is shown by the dotted curve. 
The waveform of y5 (t) gradually became closer to d(t) with the change of connection 
weights. If after an insufficient memorizing time (tm = 50) the network was set to 
regenerating mode then the oscillation could not be sustained (Figure 2.3(b)). With a 
memorizing time tm = 100, it was found that y5 (t) was sufficiently close to d(t) that the 
oscillation could. be sustained in the regenerating mode (Figure 2.3(c)). After additional 
memorizing, tm = 150, the period of the autonomous oscillation in the regeneration mode 
was closer to d(t). 

2.4.2 Effectiveness of the learning in the hidden layer 

The effectiveness of the continuous-time back-propagation learning in the hidden layer 
was examined by comparing the regenerated waveforms after learning only with the 
output unit and those after learning with both the output and hidden units. 

In the Figures 2.4, 2.5 and 2.6 the waveforms regenerated after learning only with the 
output unit are shown on the left side, while those regenerated after learning both with 
the output and hidden units are shown on the right side. All the learnings were started 
from the same connection weights, which were uniformly random in [-2,+2]. In the 
case of Figure 2.4 the sinusoidal waveform of period T = 4 was successfully regenerated 
without learning with the hidden units. On the other hand, the desired waveform of 
period T = 2 in Figure 2.5 and the complex waveform in Figure 2.6 were not realized 
without learning with the hidden units. 



CHAPTER 2. CONTINUOUS-TIME BACK-PROPAGATION LEARNING 15 

Yit--~ 

'21--~------~-----~----~--------~----~ 
•31------~~-~~~----~~ 

y4 f--------~ 
•5f--------------~------J 6 

';;---,-----;,:oo ........,,.,..5 ...-...,2;;--o -,25,..--"':J0..-"'35~'"'•o,.--"'•5--.,.so~ ., 
r, ,. 

,,r _____________ .._.,.. ___ ____..._ _ ___., 

•2i~---~~---~--------~----~~-
•)'._: .---.._.,----.__..-..___..-......__/"'-.. 

~~~ ~------.........-----.--....../"--...-.--...../"''-../-----/"'-./'- ./ 

•5~-"~''v'\_,.ll 
5';;-o ---.5<5 ---.so;;---~ss,.......~Jo,......."'J5~"'w,........"'ss-s""o ......:::s"'s .....::..,,oo 1 

r,~ 

y\~~~ 

•2 1---~-----------~~--------~-----~-----
,31~"--'~~ 

··I 
Sf~ A r-, ~ ·"" ~ r. r-. ,--.. A j I 

Y - \ .. .,~ - \ .,./ ·....., \ .. / \ ../ \ ... ../ V V V '-"L~ 

tea 1U5 1\0 115 120 125 130 1~ UO 145 ISO 
l• i:'IE! 

( •) 

•11----------------
•21----------
•31----------------
··1----------

,, 
•2 1-------~----....__.~~--~---~ 
•31 
··I 
.s f"'v" ~'""v-.v,/\./'v'\ .. ./' ,,1_! 

o 5 w ~ ro 25 30 35 w a so r, .. 
(c) 

,, 
•21~ . ..-.. .. ~~..-..- -~ 
·31.../''J~/'.~/"~"'-

''1 •51 ,.-..· ,........ . .-.. ~ -r- ·"'- ,/"""'\ l ' . r : /1' 
'-' - "-' '-' '-''· V .._;. V · '\.J -~ 

0 5 ID 15 ~ ~ ~ ~ 40 ~5 ~ 
Ti ~ 

(d) 

Figure 2.3: Changing responses of the units under learning. (a) memorizing mode, tm = 0 to 
150. (b) regenerating mode, tm =50. (c) regenerating mode, tm = 100. (d) regenerating 
mode, tm = 150: The number of the hidden units n = 4. The solid curve in the frame of y5 is 
the response of the output unit and the dotted curve is the forcing input d(t) = g(2.0 sin Hit), 
which is also the desired output. The decay time r; = 1.0 for all units. The size of random 
initial connection weights {j = 1.0 and the learning coefficients t 1 = t 2 = 2.0. 

2.4.3 Dependency of the network adaptivity on the number 
of the hidden units 

In Figure 2.7 changes in time of the mean square error are shown in relation to the 
numbers of hidden units nand the period T of the desired output d(t). Ten simulations 
were executed for each pair of n and T starting from different random initial connect ions. 
From these simulation we note the following: the error decreases faster with an increase 
in number of hidden uni ts; it takes a longer time to memorize signals with shorter periods 
(T = 1.0, 2.0); in networks with two or four hidden uni ts the errors were not tending to 
zero for a n inpu t period T = 50. 

2.4.4 Examples of regenerated waveforms 
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Figure 2.4 : The effect of learning in the hidden units. Regenerated waveforms of t he ou tput 
un it yg and the hidd en un its y 1 , .•• , y8 after learning with the desired output waveform 
d(t) = g(2 .0 sin ¥c;t). The number of the hid den units n = 8 and the learning time tm = 300. 
(a) f 1 = 1.0 and f 2 = 0. (b) f 1 = f 2 = 1.0. 

Examples of regenerated waveforms are shown in Figures 2.8, 2.9, and 2.10. Each of the 
waveforms shown in the Figures 2.8, 2.9, and 2.10{a) is the regenerated waveforms of the 
network that ga~e the least mean square error in the ten simulations of Figure 2.7. The 
waveforms with short periods (T = 1.0 , 2.0) tend to be lengthened in regeneration and 
the opposite holds for long periods (T = 20, 50). 

In some cases, one network has two or more stable periodic solut ions. In the case of 
Figures 2.10{b) and (c) two symmetric waveforms were regenerated from different initial 
states x;(O) (i=1, ... ,n+1) . An interesting observation that can be made is that in this 
network the positive feedback loop between the units 6 and 8 works like a switching 
element and the states of the two units (ys, Ys > 0 or Ys , Ys < 0) determine the mode of 
oscillation . 

In the case of Figure2.10{d) a quasi periodic autonomous oscillation was observed. 
The output waveform oscillated between the original waveform d( t) and the negative 
waveform -d(t) with a period of about 56 unit s of time. 

2.4.5 Learning of chaotic oscillation 

Although we have so fa r designed ANO networks for memorizing periodic waveforms, it is 
also poss ible to have a neural network learn a chaotic waveform [36]. If we can construct 
a network which produces the same or similar chaotic output to an unknown system, 
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Figure 2.5: The effect of lea rning in the hidd en units. Regenerated waveforms of the ou t put 
unit yg and the hidden un its y1 , ••• ,y8 afte r lea rn ing the desired output wa veform d(t) = 
g(2.0 sin t'5t) . T he number of th e hidd en units n = 8 and the learning t ime tm = 300. (a) 
t , = 1.0 and t 2 = 0. (b) t 1 = t 2 = 1.0. 

then we have obtained some information about the structure of the system. 
As the simpl~t example of chaotic dynamical system we chose Rossler 's system, 

d 
- X 
dt 

-y- z, 

d 
Jj_Y x + ay, 

d 
bx-(c-x)z . (2.22) - z 

dt 

T he shape of the chaot ic at tractor with parameters (a, b, c) = (0.344, 0.4, 5.0) is illustrated 
in F igure 2.11. The trajectory spirals away from the origin in the x-y plane, separates 
from this plane when x exceeds a threshold determined by c, and then returns to the x-y 

plane at a point nearer to the origin. The farther the separation point from the origin , the 
nearer it returns to the origin. This "horseshoe" dynamics leads to the chaotic behavior. 

Only one of the three components of (2.22) was given to an A 0 network as the 
desi red output 

1 
d(t)= ?x(t), 

L 
(2.23) 

so that it d id not exceed ( -1, +1). Although it is theoretically poss ible to simulate the 
dynamics of (2.22) with only three units, four units (three hidden and one output) were 
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Figure 2.6: The effect of learning in the hidden units . Regenerated waveforms of the output 
unit y9 and the hidden units y1 , . .. , y8 after learning the desired output waveform d(t) = 
g(2.0 sin ¥at+ 2.0 cos ~t). The number of the hidden units n = 8 and the learning time 
tm = 300. (a) E1 = 1.0 and f2 = 0. (b) E1 = E2 = 1.0. 

required. Figure 2.12(a) shows the waveforms of autonomous oscillation of the network 
after memorizing time tm = 50,000. Figure 2 .12(b) shows the network trajectory in 
four-dimension state space projected to a two-dimension plane. Although the shape of 
the att ractor looks different from the original one shown in Figure 2.11 , we can st ill find 
a scroll, jumps and a horseshoe mechanism. 
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Figure 2.7 : Changes in time of the mean square error with different nu mbers of hidden units 
and desired oscillating periods. For each setting of the number n of the hidden units and 
the period T of the external input d(t) = g(2.0 sin -?ft), 10 different learning phases we re 
executed starting from random initial connection weights W;j . th at were uniform in [-1.0, 
+ 1.0] (8 = 1.0) . The decay time of each unit T; = 1.0 and the learning coefficients were 

f J =:' f2 = 1.0. 

2.5 Discussions 

2.5.1 Recurrent connections in the hidden layer 

In deriving the learn ing rule for the connection weights to the hidden units we have 
neglected the effect of the indirect connections fro m a hidden unit to the output units 
via other hidden units. Accordingly, the partial derivatives given by equation (2.18) are 
not a good approximat ion for a hidden unit wh ich is weakly connected to the output unit 
but strongly connected to other hidden units . In other words, the learning a lgor ithm used 
is not strictly a gradient descent, but it can successfull y decrease the error function as is 
shown by the computer simulations. 

A more general learning a lgorithm which takes into account erro r propagation between 
t he hidden units is derived in Chapter 3. 
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2 .5 .2 Initial condition dep endence 
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It is well known t hat the back-propagation learning algorithm can often be trapped in 
a local minimum, especially when the desired input-output relationship is complicated. 
Whether it falls into a global minimum or not depends on the initial connection weights 
of the network, which are usually set at some random values. 

The continuous-time back-propagat ion learning algorithm inherits the same problem 
of initial cond it ion dependence. When the desired waveform d(t) is simple (e.g. a si­
nusoidal waveform), the error goes to zero for almost all initi al connection weights , but 
in the case of complex waveforms (e.g. Figure 2.10.(b)) , it was often trapped in some 
local minima and the error did not go to zero. The freq uency of successful learning is 
dependent on the waveform d(t), the number of hidden units, and the parameters of 
learning f 1 , f2 and 6. 

2 .5.3 Stability of the periodic solutions 

In the construct ion of the adaptive neural osc illator network we have made a hypothesis: 
if the output Yn+t(t) is close enough to the input d(t) in the memorizing mode, then the 
autonomous dynamical system in the regenerating mode has a stable periodic solu tion 
with a waveform similar to d(t). This hypothesis was found to be true in almost a ll 
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Figure 2.8: Waveforms regenerated with two hidden units. (a) T = 1.0 , tm = 2500. (b) T = 
2.0, tm = 1500. (c) T = 5.0, tm = 1500. (d) T = 10.0, tm = 400. (e) T = 20 .0, tm = 400. 
The external input d(t) = g(2.0 sin 'l,ft). The size of random initial connection weights was 
6 = 1.0 and the learning coefficients were €1 = €2 = 1.0. ·· 

the simulations with simple waveforms, such as sinusoidal and square waveforms. But in 
rare cases with complex waveforms, as shown in Figure 2.6, even when Yn+ 1(t) was very 
close to d(t) in the memorizing mode, the waveforms were unstable in the regenerating 
mode. 

In order to avoid such an unstable realization of the output Yn+t(t), two methods can 
be considered . One is to use a mixed input 

Yo(t) = ad(t) + (1- a)Yn+t(t) (2.24) 

with 0 < a < 1 in order to decrease the ratio of forcing input. If we decrease a with 
the progress of learning, the dynamics of the network is continuously changed into the 
regeneration mode. Another method is to add some noise to input y0 (t). In both cases, 
if the mapping F : y0 (t) >-+ Yn+t(t) is not contractive, then the output error become 
significantly large so that the connection weights are changed. 

In general, the stability of a periodic solution of an autonomous dynamical system 

d 
-:v (t) = f (:v(t)) 
dt 

can be determined by examin ing the linearized system along the solution [32] 

where 

d 
dty(t) = A(t)y(t), 

A(t) = 8J,( :v (t)). 
axj(t) 

(2.25) 

(2.26) 

(2 .27) 
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Figure 2.9: Waveforms regenerated with four hi dde n units. (a ) T = 1.0 , tm = 2500. (b) 
T = 2.0, tm = 800 . (c) T = 5.0, tm = 800 . (d ) T = 10.0,tm = 400. (e) T = 20.0 , tm = 400. 
The extern al inp ut d(t) = g(2.0 sin.;yt). The size of random in it ial connect ion weights was 
o = 1.0 and the lea rning coefficien ts we re t 1 = t 2 = 1.0. 

If the period of the solution x(t) is T, then A(t) is aT-periodic matrix. In the case of 
ANO network (2. 1), 

A(t) = H(WG(t)- I) , (2.28) 

where H = diag(1/ r1 , .•• , 1/ rn+ 1), W = {w;; } and G(t) = diag(g'(x 1(t)), ... ,g'(xn+I(t))). 
Let w(t) be a fundamental matrix of the system (2.26), that is, a matrix that satisfies 

d 
dill'= A(t)w, and w(O) =I. (2.29) 

Then the solution :c(t ) of the autonomous system 2.25 is asymptotically stable if only 
one of the eigen values of \li (T), namely .X, , is equal to one and the others sat isfy I.X;J < 1 
(i # 1) . We can make an estimation about the product of the eigenvalues from Liouville's 
law 

r;r .X;= det w(T) = Det\li (O)exp (for traceA(t )dt) . (2.30) 

In our case, this implies 

(2.31) 
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because we assumed that w;; = 0. Thus it can be seen that the product of the eigen 
values is always smaller than one, however, some of them can be greater than one if 
n:::; 2. 

2_5.4 Neurobiological interpretation 

In this chapter we have employed the bipolar output neuron model ( -1 < y(t) < +1). If 
we regard the output y(t) as the impulse frequency of the neuron it can not be less than 
zero . So we must regard y( t) as the deviation of the impulse frequency from the average 
of each neuron. 

On the basis of the experiments in monkeys [41] and the observations of the behaviors 
of patients with brain damages [27], it has been suggested that the premotor area and 
the supplementary motor area of the cerebral cortex participate in the control of skilled 
motions. It has also been proposed that the path way from the association cortex to the 
lateral cerebellum is involved in the control of preprogrammed motions [1]. It is possible 
that some networks simi lar to the adaptive neural oscillators are working in those areas, 
or some other regions in the brain. 

It is improbable that back-propagation learning is performed in biological neural net­
works; we should find some other learning principles without backward error propagation. 
It has been shown that perceptron-like learning is actually performed in the cerebellum 
of the rabbit [22]. In the present model, if it is supposed that there are sufficiently many 
hidden units with random lateral connections, then a learning at the output unit may be 
sufficient to memorize a variety of waveforms [6]. 

The structure of the central pattern generators of the lobster [38] and the leech [26] 
have been identified through exhaustive experiments of intracellular recording with mul­
tiple electrodes. This technique requires a great deal of time and effort. Moreover, it 
is difficult to apply such a method to mammals, since their neurons are very small and 
the networks are much more complicated. But even when we can only know the output 
waveform of the central pattern generator, there is a possibility of predicting the struc­
ture of the network from the output waveform through simulations of adaptive neural 
oscillator learning. 
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Figure 2.10: Waveforms regenerated with eight hidden units. (a) d(tt= g(2.0 sin 1,t), T: 
50.0,6 = l.O,t1 = f2 = l.O ,tm = 400. (b) and (c) d(t) = g(2.0stns.ot+2.0cos2.5 t) ,6-
4.0,t1 = f2 = 0.5 , tm = 2000. (d) d(t) = g(2 .0 sin tiJt + 2.0sin f.kt),6 = 4.0,fl = f2 = 
0.5, tm = 2000. 
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Figure 2.11: The chaotic attractor of Rossler equation . 
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Figure 2.12: Chaotic oscillation of an ANO network after learning of the output x(t) of Rossler 
equation ; n = 3 and tm = 50, 000 . 



Chapter 3 

Generalized learning algorithms for 
recurrent neural networks 

In the previous chapter we der ived a supervised learning algorithm for memorizing pe­
riodic patterns in a continuous-time network with one output unit. In this chapter we 
generalize the learn ing algorithms to generat ing both transient and oscillatory patterns 
in either discrete-time or continuous-time networks. In the derivation of the learning 
algorithm in the previous chapter we neglected the indirect error propagation in the 
hidden layer. We now derive a more strict gradient descent algori thm and compare its 
performance to that of the simplified one by computer simulations. 

3.1 Temporal pattern generator networks 

In this chapter we deal with the neural network models as shown in Figure 3.1, which we 
call temporal pattern generator (TPG) networks. The network consists of three types 
of units: input, hidden, and output unit s. The hidden and output units are connected 
recurrently. The states of the input units deterrrune the temporal patterns of the output. 
To generate transient patterns some of the input patterns are used as t rigger inputs. 
The desired waveforms are specified for t he output uni ts. In the learning of oscillatory 
patterns the desired signals are subst ituted for the feedback signals from the output units. 

We define the dynamics of TPG networks by the following equation: 

y;(t) = g;( h; I:: W;jYj(t)), (i E H u 0), (3.1) 
jE/UHuO 

where y;(t) is the output of the i-th unit at timet; g;() is a nonlinear output function; 
h; is a linear operator of time lag of the i-th unit; W;j is the connect ion weight from the 
j-t h unit to the i-th unit; and I , H and 0 are the indices of the input , hidden and output 
units . Bias inpu ts are omitted since they can be regarded as connect ion weights from an 
input unit whose output is always Yi(t) = 1. 

If we employ an operator of time delay 

h;: h;y(t) = y(t- 1), (3.2) 

27 
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then equation (3.1) represents the standard discrete-time model 

y;(t) = g;(L; w;;Y;(t- 1)). (3.3) 

If we choose the operator of first order time-lag 

d 
h;: u(t) 1-+ x(t) s.t. r;dtx(t) = -x(t) + u(t) , (3.4) 

then (3 .1) represents the dynamics of a continuous-time model 

-x;(t) + L w;;y;(t), (3.5) 

y;(t) g;(x;(t)). 

In the following sections we derive two versions of learning algorithms for the general 
network model defined by equation (3.1 ). One is the generalized version of the continuous­
time back-propagation learning algorithm derived in the previous chapter, which take into 
account only local dependency between the states of the units. Another is a more strict 
gradient learning algorithm in which the global interdependency of the states of the units 
is represented in a simultaneous dynamical equation. system. In the last section, learning 
algorithms for decay times of the units are derived. 
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3.2 Direct back-propagation algorithm 

First we derive a learning algorithm which take into account only local relationships 
between the states of the units. As described in the previous chapter we use Frechet 
derivatives of the mappings between the functions of time and notationally express them 
in the same way as the derivatives of vector functions. 

If we differentiate equation (3 .1) for i-th unit by a weight w;; of the same unit , we 
wave 

(i E H U O;j E I U H U 0), (3.6) 

where g;(t) denotes the gradient d~~x) at x;(t) = g- 1 (y;(t)). We neglected the recurrent 

effects of a change in w;; on the inputs Y;(t) to the i-th unit. A gradient learning algorithm 
for the weights of output units are derived from (3.6). 

In a recurrent network, the state of a hidden unit gives effects on the state of an output 
unit through many different pathways as shown in Figure 3.2. However, by taking into 
account only the direct connection from a hidden unit to an output unit, we can derive 
a simple learning algorithm which we call "direct back-propagation" learning algorithm. 
H we differentiate equation (3.1) for k-th output unit by the output y; of a hidden unit, 
we wave 

(kEO;iEH). (3.7) 

Applying the chain rule for (3.6) and (3.7), we have the differential relationship between 
k-th output unit and a weight of i-th hidden unit 

[)yk [)yk [)y; 
[)y; aw;; 

g~(t) hk Wk;g;(t)h;y;(t), (k E 0; i E H;j E I U H U 0). (3.8) 

A gradient learning algorithm for the weights of hidden units are derived from (3.8). 
We define an error function of the i-th unit (i E 0) 

e;(t) = ~(y;(t)- d;(t)) 2 (3.9) 

and the total error 
e(t) = L e;(t). (3.10) 

iEO 

In general, the output of one output unit may give effects on other output units. However, 
if we want the total error e(t) to be zero, then the error at each output unit e;(t) must 
be zero. Thus we assume that the learning in the i-th output unit should be made only 
to decrease e;(t) and approximate the differential relationship between a weight w;; of an 
output unit and the total error e(t) by 

aw;; [)y; [)w;; 
(i E O,j E IUHUO) 

(y;(t)- d;(t))g;(t)h;y;(t). (3.11) 
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Similarly, the derivative of e(t) with respect to a weight w;; to i-th hidden unit is ap­
proximated by 

In order to decrease the average error 

1 {T 
E = T Jo e(t)dt, 

we can use "epochwise" gradient descent algorithm 

aE 
-f-­

aw;; 

1 iT 8e 
-f- --1dt. 

T o 8w;; 

(3.12) 

(3.13) 

(3.14) 

Instead of averaging a~; 1 and updating the weights at the end of each period ( k -1 )T ~ 
t ~ kT, we achieve almost equivalent learning by continuously updating weights by 
epsilon?( e, w;; )1 provided f is sufficiently small. This "real-time" learning algorithm for 
an output unit of a continuous-time model is given by 

(i E 0), 
(iEH). (3.15) 

It has been shown by computer simulations that this "direct back-propagation" algo­
rithm, which takes into account only the direct effect of a hidden unit on the output units, 
was sufficient in the learning of oscillatory patterns [8] and the prediction of sequences 
produced by a simple automaton [14]. 
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3.3 Simultaneous back-propagation algorithm 

If we want to estimate the recurrent influence of a change in a weight of a unit on all of 
the hidden and output units in the network, it is necessary to express the interdependence 
in a set of simultaneous equations [8, 11, 45]. Differentiating (3.1) for the k-th unit by a 
weight W;j ( i E H U 0, j E I U H U 0) we have the following simultaneous equations for 
(k E flU 0) 

g~(t) hk( L ~(wklYI(t))) 
IEluHuO w 11 

g~(t)hk( 2..:: wk/:Yl +ok,y1(t)), 
lEJ-/UO uW1J 

(3 .1 6) 

where Oki is Kronecker's delta function. Note that if we restrict the range of summation 

L Wkl :Yl tokE 0 and IE H, (3 .16) is equivalent to (3 .6) and (3 .7 ) of direct algorithm. 
l U'Wjj 

The operator equation system (3.16) implies that functions p~ = ~Yk 1, the change 
U'Wij 

in Yk caused by a small change in the weight w;1, obeys the simultaneous equation 

p~(t) = g~(t) hk( 2..:: wklP;1(t) + okiy1(t)), (k E H u O) . 
. IEHUO 

(3.17) 

This is the linearized system along the trajectory of the network dynamics (3.1) with a 
forcing input Yi(t) in the i-th component. If the trajectory of the network dynamics is 
a stable one, such as a limit cycle, then this linearized dynamical system has a stable 
solution that we can compute from the initial condition 

p~(O) = 0, (3.18) 

which means that the initial state of the network does not depend on the connection 
weights. 

We can derive gradient algorithms using the so lution of (3 .17) and (3.18) . A discrete­
time version is of this algorithm was derived by Williams & Zipser [45] and a continuous­
time version by Doya & Yoshizawa [8]. The real-time algorithm for continuous-time 
network is expressed as, 

oe 
-f-­

OW;j 

-f L 8ek .!!J!!_ 
keo ayk aw,1 

-f L(Yk(t)- dk(t))p~(t) . 
kEO 

(3.19) 

When we implement this "simultaneous back-propagation" algorithm special atten­
tions must be paid to the stability of the linear system (3.17) . With the change of the 
weights by learning the network trajectory can transiently become unstable. In such 
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a case the linearized system will become unstable and some of the components p:i can 
increase exponentially in time, which causes a destructively rapid change of the weights. 
One way to avoid this is to limit the speed of weight change, for example, by a sigmoid 
function. 

3.4 Learning of de cay times 

In the simulations of the previous chapter it was seen that a continuous-time network 
with uniform decay timeT for each unit can learn oscillatory signals with periods in the 
range T to 20r. However, it is desirable that the decay time of each unit is adjustable so 
that the network can efficiently learn the given temporal pattern. In this section we will 
derive two learning equat ions for the decay times, which correspond to the preceding two 
algorithms for connection weights. 

If we differentiate equation (3.6) with respect tor;, we have 

d d ax i ax; _a...::L:~,;,..· W__:i:o_:i Y:.:,i 
-x;+T;-- = - - + 
dt dt ar; ar; ar; 

(3.20) 

If we assume that the inputs Yi(t) do not depend on the decay t imeT; we have 

d ax; ax; . 
T;dt ar; = - ar; - x;, (3.21) 

Thus the di fferential relationship between the decay time and the state of the unit is 
expressed as 

ax; . -a = -h;x; . 
T; 

(3.22) 

By the same approximations used in deriving direct back-propagation algorithm, the 
following learning rules for the decay time of the output and hidden units are derived; 

d -E.!!!_ ay; ax; 1 dt7i ay; ax; ar; 
-E(y;(i)- d;(t))g;(t)h;:i:;(t), (i E 0), (3.23) 

-E I.; !!..._ ayk ay; ax; 1 
kEO ayk ay; ax; ar; 

-£ I.;(yk(t)- dk(t))g~(t)hkwk;g:(t)h;:i:;(t), (i E H). (3.24) 
kEO 

In order to take into account the global interdependency of the states of the units, 
we differentiate the equation (3 .6) for k-th unit by r;, giving 

(3.25) 

Thus we have the following differential relationsh ip between the decay time and the states 
of the units 

axk ( '1\' ax, . ) 
-a . = -hk L, Wkl-a . - bkiXk(t) . (3 .26) 

T, IEI-IUO r, 
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Hence, the simultaneous back-propagation algorithm for a decay time is 

(3 .27) 

When implementing these algorithms it is necessary to impose an additional con­
straint so that the decay time do not become negative. 
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3.5 Simulations 

Results of computer simulations that compare the performances of the two algorithms 
derived in the preceding sections were compared in three learning tasks, each from five sets 
of random initial connection weights. Figure 3.3 shows the error curves of the learning 
of two sinusoidal waveforms with different periods. In this case direct algorithm had 
better performance compared to simultaneous algorithm. Figure 3.4 is the learning of a 
complex waveform. In this case simultaneous algorithm is working better. Figure 3.5 is 
the learning of the chaotic oscillation of Roessler equation. Also in this case, simultaneous 
algorithm achieved lesser errors. 

The simultaneous algorithm requires O((no + n 11 )
3(n0 + n 11 + n 1 )) computations 

at each time step, whereas the direct algorithm requires O(nonu(no + nH + n1)) com­
putations where no, nH, n1 denotes the numbers of output, hidden and input units 
respectively. If we provide many hidden units-which is required when the target tem­
poral pattern has a complex waveform-the difference is very large. 

Therefore it can be concluded that the simultaneous back-propagation algorithm is 
advantageous only when we want a network with small numbers of units to learn a 
complex waveform. 
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3.6 Discussions 

3.6.1 Back-propagation through time 

In discrete-time recurrent networks it is possible to apply the back-propagation algo­
rithm of feed-forward networks by unrolling the network as shown in Figure 3.6 [35]. 
Pearlmutter extended this idea to continuous-time networks using a discrete-time ap­
proximation at infinitesimal time steps [29]. These schemes are called "back-propagation 
through time" [46] . 

However, these algorithms are not suitable for continuously running networks because 
we must compute the network dynamics forward in time, save the history of the network 
state, and then calculate the error propagation backward in time. 

3.6.2 Bifurcation of the network dynamics 

To apply gradient descent learning algorithms to recurrent networks we have assumed 
that the error function is smooth in the space of network parameters. It is true in feed­
forward networks with smooth output functions. However, in recurrent networks the 
output changes discontinuously with a change of parameters at some of the bifurcation 
points-such as at saddle-node bifurcations and subcritical Hopf bifurcations. At such 
points gradient descent learn ing is not valid since it assumes continuity of the error 
function. In computer simulations it is sometimes observed that error functions abruptly 
increase, see Figures 2.7, 3.3, 3.4 and 3.5. 

Since bifurcation points are usually measure zero in the space of parameters, we may 
expect that the gradient decent algorithms are almost always valid. However, in most of 
the significant learning tasks, such as learning of multistable dynamics and limit cycles, 
the network must pass through bifurcation points. In the worst case, the learning process 
will never converge. This is a fundamental problem of supervised learning in recurrent 
neural networks yet to be investigated . 
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Input Units Hidden Units Output Units 

(a) Model of a transient temporal pattern generator network. 

Desi~ed. Outputs 

Actual Outputs 

M 

Input Units Hidden Units Output Units 

(b) Model of an oscillatory temporal pattern generator network. 

Figure 3.1: Structure of temporal pattern generator network . 
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Figure 3.2: Signal pathways from a hidden unit to an output unit . 

37 



CHAPTER 3. GENERALIZED LEARNING ALGORITHMS 38 

Error 

Je+OO ------+-----+------+--------+- el.d e2:a·· 
3 -----+------1------+-------+- e3~cf -

1e_01 -~~'\. ----+------+------+------+-- e4~d 
~;\ e5:ct-

3 ~~,~~-----.. !~,+------+------+------+--
1e-02 ______j_,X'". \_..--,

1
-r."<-· ~' t----H:--t------t------1--'\.. .. , 

\'\ ...... ! ... ' .. . 
3 \~! %, .. ~ .... . 

\ ' ·. -t: ·. .. . -----"' .... ~ ........ - : .... -~ - \ \ . ---:---
· .• , ..... .' . "'.:: ... ~+t:::::::,-=-----oc----+-

-- '- -"~··:/,__ "'/·~ 
1e-03 

3 ----~---~~---~~==~--~-

- -------------1e-04 ------+------+------+-------1-
tm x 103 

20.00 5.00 10.00 15.00 

(a) Direct back-propagation algorithm . 

Error 

1e+00 -------1-------l-------1-------1- el.x eZ:x .. 
3 -------1-------1-------1-------1- e3~x-

1e-01 \-.. ... 
I ' 

\ 
\ _j-., 

3 ~~~~-"-.. -. ~,~, -+r---~--+------+------+--
····r \ I I 

1e-02 ------\ ~~--- · ....... .. .. \ .... . , -
3 • - - --- --

1e-03 ----- -_- ---~-~~--=-- ~- c...-.~-'-·-=-~-r ·-=.;-~=-' .... --~, ~:::::·==---::.:_ -=- -=~=--=-~"':::· ·::::·:::--:::::::'_:::::JI 
3 ------+-------!----~+-~~---+-

;4.; 
e5:X-

1e-04 -------lt-------lt-------1--------'t--
tm X 103 

20.00 5.00 10.00 15.00 

(b) Simultaneous back-propagation algorithm. 

Figure 3.3: Comparison of the two algorithms in learning sinusoidal waveforms d1(t) 
g(2.0sin(liit)) and d2 (t) = g(2.0sinC~~0 t)); no= 2 and nH = 4. 
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(b) Simultaneous back-propagation algorithm . 

Figure 3.4: Comparison of the two algorithms in learning a complex waveform d(t) 
g(2.0 cos( ¥at)+ 2.0 sinC';,"0 t)); no= 1 and n fl = 6. 
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Figure 3 5: Comparison of the two algorithms in learning the chaotic waveforms of Roessler 
equation (2 .22) ; no= 2 and nH = 4. 
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Figure 3.6 : An unrolled recurrent network . 
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Chapter 4 

Control of regenerated temporal 
patterns 

It is known that a central pattern generator network can have multiple oscillating modes 
and one of them is selected by the input from the higher centers [26, 38] . In this chapter 
we invest igate schemes for memorizing multiple temporal patterns in one network and 
controlling temporal patterns of regeneration . 

One approach is to include control inputs to the network, as mentioned in the previous 
chapter, so that the network is trained to generate different temporal patterns with 
diff~rent static control inputs. 

Another scheme is to select one of the multiple at tractors in the state space of the net­
work by an initial state configuration. This scheme is similar to the Hopfield associat ive 
memory except that the network converges to a the limit cycle instead of an equilibrium 
point. 

A third possibility is regeneration of a sequence after the presentation of a part of 
it. Sequential memory of humans, such as episodes of experiences, sentences and songs, 
have such characteristics. 

42 
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Figure 4.1: Three transient t emporal patterns generat ed by different trigge r inputs . 

4.1 Selection and modulation of tempora l p atterns 
by static inputs 

In the network models shown in Figure 3. 1 the input patterns modify act ivation levels 
of the hidden and output un its and modulate the output waveforms . Figure 4.1 shows 
an example of a simulat ion where trans ient patterns are generated. One of the three 
different t rans ient sequences are selected by a trigger input given to one of the input 
nodes. 

Figure 4.2 shows an example where the period of the oscillation is controlled by the 
t he input level. T he network has one inpu t un it, four hidden units and one output unit. 
It was trained to generate sinusoidal wavefo rms with period 2.0, 3.0 and 4.0 at the input 
levels - 1, 0, and + 1, respect ively. Figure 4.3 shows the relat ionship between the input 
level and the period of osci ll ation. The period is continuous ly controlled by the input 
level. 
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Figure 4.2: Cont ro l of the period of osci ll at ion by t he input level. 

4.2 Selection of limit cycles by initial stat es 

We can consider the ANO learning process as a Hopf bifurcation. At the beginning of 
the learning the connection weights are given by small random values and the origin is 
a unique global equi librium point of the network because each unit has a decay term. 
After some learning the origin becomes a stable focus. With additional learn ing the 
origin becomes unstable and a li mit cycle attractor emerges around it . 

If there are distinct stable equilibria in separate regions of the phase space of the 
network then by inducing a Hopf bifurcation at each equi librium there can be produced 
multiple limit cycle attractors. In order to prepare multiple equilibrium attractors the 
principle of an associative memory using the autocorrelation matrix [28, 20] can be em­
ployed. 

The fo llowing algorithm was used in simulations. 

1. Choose m pairs of key patterns sk = (s~, ... ,s~)' (is71 < 1) one for each of the 
required periodic waveforms dk(t) (k = 1, ... , m). 

2. Let the initial connection weights be 
m 

w;j =2::.:AsJ+ J.L;j (i,j=1, .. . n) , (4.1) 
k=l 

where J.li j are small random numbers. If the number of key patterns m is small 
enough with respect to the number of the hidden units n, there are stable equilibr ia 
in a neighborhood of each of the key patterns. 
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Figure 4.3: Relationship between the period of oscillation and the input level. 

3. Repeat ANO learning until the error becomes sufficiently small for all patterns 
k = 1, ... , m. Namely, 

(a) set the initial state of the network as 

y;(O) ==sf, x;(O) = g- 1 (s7) (i = 1, ... ,n) . (4.2) 

(b) then execute the continuous-time back-propagation learning with the input 
waveform dk(t), which is the desired output waveform, for a given time tk. 

After the completion of this algorithm if the network is set to regenerating mode with 
an initial state near sk then a limit cycle attractor with some output waveform similar 
to dk(t) will be generated . This can be seen as a process of associative memory between 
the static patterns and the dynamical patterns. 

The result of a computer simulation is shown in Figure 4.4. The number of key 
patterns m = 2 and the number of hidden units n = 20. Two key patterns were made 
of uniform random numbers in the interval (-1.0, +1.0]. The memorized waveforms 
were d1 (t) = g(2.0sin ;;~)and d2 (t) = g(2 .0sin ;~~)- Figure 4.4(a) is a two-dimensional 
projection of the 21-dimensional phase space. The 21 arrows are unit vectors for y; 
(i = 1, ... , 21). There are two distinct limit cycles. The output waveforms corresponding 
to these limit cycles are shown in Figure 4.4 (b) and (c) . 

Figure 4.5 shows the state space of a network with 50 hidden units which has mem­
orized three different waveforms. It is well known that an associative memory network 
with n units can at most memorize 0.15n stable patterns but it is not yet clear how many 
limit cycles can be stored in a network. 
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Figure 4.4: Two limit cycles memorized in a network of 21 units . (a) The phase space of 
the 21-neuron network . (b) and (c) Regenerated waveforms starting from the initial states s 1 

and s2 . 

4.3 Recalling a sequence from its part 

It is a common ability of people to be able to recall long phrases or melodies just hearing 
a part of them. Such a recalling mechanism can be modeled by the learning in ANO 
network. 

A simulat ion was performed with a network with six hidden units and three output 
un its. The network was a lternately trained to generate two different periodic sequences 

1 23123 ... 

and 
132132 .. . , 

where 1, 2, and 3 represent a pulse- like output from one of three output units. After 
20000 units of time, the network acqui red two different limit cycle attractors. 

Figure 4.6 shows the regeneration of the memorized sequences. In the first four units 
of time the state of the output units were replaced with one of the memorized sequences. 
After that the network was set into its autonomous dynamics. In F igure 4.6(a) from the 
partial sequence "2 1", one of t he memorized sequence "2 1 3 2 1 3 2 ... " was recalled and 
in Figure 4.6(b) the sequence "3 1 2 3 1 2 3 ... " was recalled from the partial sequence 
"3 1". 
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Figure 4.5: Three limit cycles memorized in a network of 51 units. 

4.4 Generation of complex patterns 

It is relatively difficul t to train a network to oscillate with complex waveforms. However, 
by connecting together several ANO networks each of which generating relatively simple 
waveforms we can const ruct a large scale network which can produce various and complex 
waveforms. 

Figure 4.7 is an example with two ANO networks. The higher ANO outputs t he 
patterns (y6 , y1 ) = (1, 0) and (0, 1) alternately. Its period is controlled by the level of 
the the input y 1 • The lower ANO has three output un its. Its output sequences are 
determined by the input patterns given from the higher ANO as follows: 

in put pattern 
(ys,Y7) = (1,0) --+ 

(0, 1) --+ 

output sequence 
123123 .. . 
132132 .. . 
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Figure 4.8 shows examples of the waveforms generated by this network. The period 
of oscillation of the higher A 0 was about four times that of the lower A 0 and the 
output sequence was 

123123 132132 123123 ... 

When the level of the input to the higher ANO is changed different sequences were 
generated in the lower ANO. 
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(a) 

(b) 

Figure 4.6: Recalling sequences from the parts of them . 
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Figure ~.7 : Hierarchical connection of two ANO networks . 
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Figure 4.8: Waveforms regenerated by the hierarch ica l ANO network . 



Chapter 5 

Coordination of neural and physical 
dynamical systems 

The skilled control of human and an imal motion is the result of the cooperative interact ion 
of neural networks and physical systems-muscles, skeltons, physical environments and 
sensory organs. In this chapter we invest igate the process of coordination of neural and 
physical dynamical systems. 

It has been shown from physiological studies that animal motion is realized by a 
distributed neural control system as shown in Figure 5.1. Each part of the body is con­
trolled by a local CPG network which can autonomously generate a rhythmical pattern. 
However, it is essential that the temporal patterns generated by CPGs are matched to 
t he characteristics of the physical systems and that the oscillation of different CPGs are 
synchronized with the appropriate phases. 

It has been experimentally shown that the temporal patterns generated by a CPG 
is dependent on sensory feedback inpu ts, the lateral inputs from other CPGs, and the 
command inputs from the brain , since the waveform and period of oscillation of a CPG 
are disordered when the sensory feedback fibers or lateral connections between other 
CPGs are removed [19, 30]. 

In the following sections we investigate the synchronizing mechanism of neural and 
physical dynamical systems. First we investigate synchronizat ion of network dynamics 
and physical systems, which is essential in locomot ion control. Then we invest igate the 
synchronization of multiple CPG networks, which is important in mul t i pedal locomotion 
control. 

5.1 Synchronization of physical and n e ural systems 

Many neu ral network model have been proposed for the control of motion trajectories, 
such as the motion of an arm [24, 23], that calculate the motor commands by compen­
sating for the unfavorable characterist ics of the physical systems-such as nonlineari ty, 
excess degree of freedom and time-lag. In the control of locomotion , however, trajectories 
of limbs need not be given expl icit ly but they should be determi ned so that the animal 
can move efficiently and stably. In order to achieve stable and efficient locomotion it is 
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sensory feedback 

synchronizing 
signal 

motor control 

musculoskeltal systems and physical environment 

Figure 5.1: Interacti on between CPGs and the ph ysica l enviro nment . 

much more important to utilize the properties of the physical environment than to defeat 
them. 

In th is section we construct a model of synchronization of neural dynamics to a phys­
ical system. As the simplest example of a locomotion system with oscillatory dynamics 
we consider a rolling robot as shown in Figure 5.2. This round robot rolls across a surface 
by changing its balance, that is, by shifting its weight relative to its center of rotation. 
In order to move the robot in a given direction at a constant speed the movement of its 
weight must be synchronized to the rotation ang le 0 of the body. If the reciprocatiing 
motion of its weight is too fast or slow compared to the current speed of rolling, then the 
rotation of the body cannot be entrained and the motion becomes unstable. 

Consider a control network for this robot consisting of four input units y1 , ..• , y4 , 

four hidden units y1 , ... , Y•l> and one output unit y9 • The input y 1 controls the speed of 
oscillation of the network. Other three inputs are feedback signals from the rolling robot; 
y2(t) = sinO(t), y3 (t) = cosO(t), and y4 (t) = 0.2w(t) . The output of the network y9 (t) 
controls the displacement of its weight from the center of the robot; u(t) = 0.8 Ry9(t), 
where R is the radius of the robot. 
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speed control 

Figure 5.2: Control of a rolling robot by a CPG network . 

The dynamics of the network is defined by the following equation, 

y;(t) = g;( h;{ L WikYk(t) + L WifYt(t)}), (i = 5, ... , 9), (5.1) 
kEN IEP 

where P = {2, 3, 4} denotes the indices of the units that represent the state of the physical 
system, and N denotes the other indices. 

In order to synchronize the phase of oscillation of the network to the physical state it 
is required that the sum of the physical input LteP WitYt(t) are synchronized to the sum 
of the networks inputs LkeN w;kyk(t). Thus we define an error function of the i-th unit 

J;(t) =~{a L w;kYk(t)- LWifYt(tW, 
2 kEN IEP 

(5.2) 

and derive a gradient learning algorithm as follows, 

d 8J, 
rv-d w,1 + w,1 = -s(t) -

8 
= s(t){ a L w;kYk- L wilyt} y1(t), (j E P), (5.3) 

t Wij kEN IEP 

where s(t) is a parameter which controls the speed of learning. If we set s(t) positive only 
when the robot is rolling in desired direction then the phase relationship of the neural 
and physical systems at that time will be stabilized. 
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Firstly, the network was trained to oscillate with sinusoidal waveform of periods 4.0 , 
3.0, and 2.0 with the corresponding inputs y1 = -1, 0, and +1. The connection weights 
from physical input units were kept zero . In this learning phase, each of the three 
waveforms was trained for 100 units of time. Figures 5.3(a),5.4(a) and 5.5(a) show the 
oscillation of the network and the robot after 10 such training phases. The periods of 
autonomous oscillation were 4.40, 3.05, and 2.75 at the input levels y 1 = -1, 0, and 
+1, respectively. Since the state of the robot is not yet fed back to the network, the 
oscillation of the network and the robot is not synchronized and the rolling motion of 
the robot was not entrained to the network output. 

In the next phase, the feedback connections from the robot were established by the 
learning rule (5.3). The parameters of learning were a= 0.2 , Tp = 10.0, and s(t) = w(t). 
Figures 5.3(b ),5.4(b) and 5.5(b) show the coupled oscillation of the neural and physical 
systems after 8 sets of physical training. It is seen that the rolling motion of the robot 
is entrained to the neural output. The period of oscillation were 3.60, 2.90, and 2.65 for 
the input level y1 = -1 , 0, and +1, respectively. 
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5 .2 Synchronization of multiple CPGs 

It has been shown in the studies of multipedal locomotion that the movement of each 
leg of an animal is controlled by a distinct oscillator network and t hat the neural in­
terconnection between those CPGs are used to synchronize the oscillations in different 
CPGs [30]. It has been shown both mathematically and computat ionally that two neural 
osci llator networks with mutually positive connections will oscillate in phase, and those 
with negative connections in opposite phase. The problem here is how to synchronize 
the oscillations of different CPGs with a specifi c phase required for efficient locomotion 
in a given physical environment. 

We consider a two-legged robot as shown in Figure 5.6. The joint angles of the fore 
leg and the hind leg were controlled by different CPGs, each of which consists of three 
continuous-time neuron models. First CPGl and CPG2 were trained to oscillate with 
periods 2.5 and 2.0 respectively. Wi thout interconnection of the two CPGs, the relative 
phase of the CPGs, and accord ingly the phase of the swing of the legs, changed gradually 
with time. The task of the learning is to fix the relat ive phase of two CPGs when the 
robot is walking effect ively in a given direction. 

We used the correlation learning scheme which we derived in the previous section. 
The connect ion weights between CPGl to CPG2 were changed by the following equation , 

s(t) {a1 I:; w;kYk- L w;~yi} Yi(t), 
kEN1 lEN2 

s(t){a2 I:; w;kYk- L w;1yi} Yi( t ), 
keN, leN, 

where N 1 and N 2 are the indices of the units in CPGl and CPG2. 
Figure 5.7 shows an example of the process of learned synch ronization. The oscillation 

of two CPGs were initially independent, and began to entrain after 10 seconds. After 40 
seconds of cor relat ion learning, the two CPGs sett led into stable synchroni zation. 

5.3 Discussion 

It was shown that the learn ing scheme (5 .3) gives a solution to the synchronization prob­
lem of neural and physical systems. The synaptic modification rule is based on the 
correlation between formerly establ ished inputs and new incoming signals. This is con­
sistent wi th empirical data of physiological experiments, such as long term potentiation 
of synapses in hippocampus [4]. 

However, this algorithm depends very much on an optimistic assumpt ion that the 
system eventually finds a fairly good motion pattern. It is not assured that a motion 
pattern acquired by this learning scheme is an optimal one. Therefore we should seek a 
more reliable learn ing mechanism that sat isfies the biological const raints. 
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y1 L_ __________________________ __ 

y4 

y5 

y7 

y8~. 

lf3t~~~ 
5 10 15 

(a) Without sensory feedback inputs. 

y1 L_ __________________________ __ 

y?~'---./,.---....'--J~, ___ /--.....~ 

y8 k ... __ ./''------../"··, ___ /\.._ __ /'\.___./',~ 
y9 t-~-;-~/7''\:0~·<~~<~<7<,2)<-=><=><~~~~> 

5 10 15 

(b) After the learning of sensory feedback connections. 

Figure 5.3: Coupled dynamics of an ANO and a rolling robot : y 1 = -1. 
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(a) Without sensory feedback inputs. 
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5 10 15 

(b) After the learning of sensory feedback connections. 

Figure 5.4: Coupled dynamics of an ANO and a rolling robot: y1 = 0. 
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(b) After the learning of sensory feedback connections . 

Figure 5.5: Coupled dynamics of an ANO and a rolling robot : y1 = +L 
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Figure 5.6: Contro l of a two-legged robot by two CPGs. 
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Figure 5.7: The relative phase of two CPGs was locked so that the robot walked stably in a 

give n di rectio n. 



Chapter 6 

Conclusion 

In this dissertation supervised learning algorithms for recurrent continuous-time con­
tinuously running neural networks were derived and their abilities were examined by 
computer simulations. 

In Chapter 2 a continuous-time neural network model called an Adaptive Neural 
Oscillator was proposed and the back-propagation learning algorithm was applied to it 
using the idea of derivatives of the mapping between functions of time. It was seen from 
computer simulations of a network with uniform decay timeT that an ANO network can 
learn. ·to oscillate with a period irt the range ofT to 20r . Simple si~usoidal waveforms were 
eas ily learned. It was also possible to learn waveforms consisting of multiple frequency 
components. However, it is not clear what sort of waveforms can be memorized in the 
network by learning. 

In Chapter 3 general learning algorithms for recurrent neural networks were for­
mulated that can be applied to both continuous-time and discrete-time models. The 
discrete-time versions of these algorithms correspond to the simple recurrent network by 
Elman [14] and the real-time recurrent learning algorithm by Williams and Zipser [45]. 
From simu lations of learning of oscillatory waveforms it was seen that the elaborate and 
simplified learn ing algorithm had comparable performance. 

In Chapter 4 three schemes were proposed for memorizing multiple temporal patterns 
in one network. Oscillation of a network can either be controlled continuously by static 
input patterns, selected by the initial state of the network, or evoked from a part of a 
sequence. 

In Chapter 5 a correlation learning scheme is applied for synchronization of neural and 
physical dynamical systems. Connection weight from external inputs were established 
so that the sum of external inputs simulates the inputs from within the network. This 
learning scheme was tested by two simulations with locomotory robots for constructing 
sensory feedback connections from physical systems and lateral coupling between multiple 
oscillator networks . 
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6.1 Applications of learning m recurrent networks 

In the last few years many researchers have become aware of the potential of the recur­
rent neural networks. Elman (14] showed that some structures in temporal sequences 
are represented in the hidden layer of a recurrent network after learning to predict the 
strings generated by a simple grammar. Williams and Zipser (45] demonstrated that 
recurrent networks can be trained to be finite state automata. These works activated the 
application of recurrent networks to recognition and generation of grammatical sequences 
[5, 40]. 

Recurrent networks are being used to model the functions of biological neural systems. 
Tsung and Selverston (42] modeled the CPG of lobster by a recurrent discrete-time 
network and applied the learning algorithm proposed by Williams and Zipser. Recently, 
Rowat and Selverston (33] have applied a continuous-time back-propagation algorithm 
to a more biologically plausible models of CPG . 

Application of supervised learning of recurrent network has not been limited to the 
models of motor control systems. Qian and Sejnowski applied back-propagation through­
time to determine the lateral connect ions of a network model of binocular stereo vision. 
Zipser (4 7] trained a recurrent network to solve delayed matching tasks and gave an inter­
pretation of temporal patterns of activit ies in neurons which are involY.ed with working 
memory. 

6.2 Explorations of recurrent networks 

Supervised learning in recurrent neural networks has a large potential still to be stud­
ied . For example, in the modeling of biological neural systems and in applications to 
temporal information processing, such as, voice recognition, language understanding and 
generation, processing of music, and robotic control. 

However, in formulating learning algorithms careful attentions must be given to de­
creasing the amount of computation and to increase the probability of successful learning 
by avoiding local minima and learning instabilities. Restr iction of the topology of the 
network is a practical means to this end. 

It is not as easy to elucidate the abilities of asymmetric recurrent neural networks as 
to investigate those of feed-forward or symmetric recurrent neural networks. However, 
the networks in our brains are neither feed-forward nor symmetric. In order to reveal the 
secrets of brains it is indispensable to determine the abilities of information processing 
by recurrent neural networks. The learning schemes derived in this study should be an 
effect ive tool in finding our way through the labyrinth of recurrent networks . 
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